2021久久久精品_337p大胆视频_97超精品视频在线观看_99精品视频在线看

您現在的位置:首頁 > 資料下載 > 中小型水電站調流調壓閥選型

中小型水電站調流調壓閥選型

  • 發(fā)布日期:2018/8/16      瀏覽次數:1033
  • 提 供 商: 上海申弘閥門有限公司 資料大?。?/td> JPG
    圖片類型: JPG 下載次數: 144
    資料類型: JPG 瀏覽次數: 1033
    相關產品:
    詳細介紹: 文件下載    圖片下載    

    之前介紹組合式減壓閥在國華惠州熱電應用,現在介紹中小型水電站調流調壓閥選型為保證工程安全并降低造價,中小型引水式水電站多采用調壓閥作為調節(jié)保證措施,調壓閥直徑的確定不僅直接影響工程投資,且涉及到系統的平壓效果。通過分析不同運行工況、水道系統大壓力上升值、機組轉速上升率、事故甩負荷導葉關閉時間等多種因素對調壓閥直徑的影響,提出了合理的調壓閥直徑選取需滿足的原則,并結合某電站調壓閥直徑的優(yōu)化計算,驗證了理論分析提出的原則。

    物料名稱規(guī)格型號數量計量單位單價總價備注
    活塞式調流閥ZXHS341H-16C  DN9001165000165000配套Q235B材質法蘭、配套閥門用的δ=8mm四氟乙烯墊、螺栓,減壓用。型號:活塞式調流調壓閥
    雙偏心球面渣漿閥ZXZQ341H-16C  DN300160006000配套Q235B材質法蘭、配套閥門用的δ=4mm四氟乙烯墊、螺栓,排泥用。型號:雙偏心半球閥
    雙向承壓球面旋轉閥ZXQF3247HR-16C  DN90016400064000配套Q235B材質法蘭、配套閥門用的δ=8mm四氟乙烯墊、螺栓,檢修用,型號:雙向承壓球面旋球閥

    在水電站運行過程中,為改善水錘現象,降低由機組突然甩負荷、水輪機導葉快速關閉帶來的管道壓力升高和轉速上升值,通常會采取設置調壓室的方式。但對一些中小型的長引水式電站,設置調壓室可能受地形、地質等條件限制,同時需投入大量的人力和資金,因此需考慮其他調節(jié)保證措施來滿足此類水電站的穩(wěn)定運行。采用造價優(yōu)廉的調壓閥是中小型引水式電站中一種有效的調節(jié)保證措施。從20世紀80年代起,我國開始在長引水式電站中采用“以閥代井”的調節(jié)保證措施。湖南龍源電站是我國座采用調壓閥代替調壓井的試點電站,該電站壓力引水管道總長1950m,設計水頭83m,3臺水輪機裝設我國自行研制的TFW-400型調壓閥。之后云南西洱河二級電站、貴州白水河一級電站、廣西長灘河水電站等亦采用調壓閥作為調節(jié)保證措施,有效降低了管道的壓力升高值,確保了輸水系統的安全,使電站運行穩(wěn)定。但在以往的調壓閥計算中,通常采用經驗公式計算確定調壓閥的直徑,本文則通過水力過渡過程的計算,分析了調壓閥的直徑選取和優(yōu)化問題,為中小型引水式水電站采用“以閥代井”的調保措施提供了理論依據與設計方法。中小型水電站是我國電力工程中的重要組成內容,該電力工程建設與社會經濟發(fā)展也有著非常緊密的。調壓閥在中小型水電站調壓系統設計中有著較為廣泛應用,調壓閥應用可以促進水電站系統運行安全性、穩(wěn)定性提升。但是深入調查發(fā)現,調壓閥的應用還存在著一些不良問題,調壓系統設計人員需要加強研究力度,對調壓閥應用產生的不良問題進行深入分析,積極找尋有效措施進行改善。本文就是對中小型水電站調壓系統設計中調壓閥的運用進行深入探究,希望對相關設計人員有所啟示,促進我國中小型水電站建設發(fā)展。

    1、中小型水電站調流調壓閥選型調壓閥直徑優(yōu)化原理
    調壓閥的工作原理為調壓閥與機組受同一調速器控制,在機組突甩負荷時,水輪機導葉快速關閉,同時調壓閥開啟,泄放機組由于導葉關閉而減少的過流量,待導葉*關閉后,調壓閥再以能保證允許管道壓力上升值的速度緩慢關閉。調壓閥啟閉的非恒定流過渡過程可采用特征線法計算,其邊界條件見圖1。本發(fā)明公開了一種水電站調壓閥控制系統,具有控制器、顯示屏、數字平衡閥驅動器、數字平衡閥、接力器、調壓閥、模式控制按鈕、手動控制按鈕、限位開關、水壓壓力表,結構簡單,能夠取代水電站取代調壓井或者調壓塔來解決壓力和轉速上升的問題;系統集手動和自動為一體,滿足中小型水電站在各種情況下機組的安全運行,適用于所有水電站。中小型引水式水電站調壓閥尺寸優(yōu)化圖1 調壓閥邊界條件調壓閥進、出口斷面C+、C-特征線相容性方程均成立,分別為:中小型引水式水電站調壓閥尺寸優(yōu)化
    其中中小型引水式水電站調壓閥尺寸優(yōu)化式中,Hp1、Hp2分別為調壓閥進、出口斷面的測壓管水頭;Cp、Bp、CM、BM為前一時刻t-Δt的已知量(t為時間,Δt為時間步長);Qp為調壓閥的過流量;αp為調壓閥的過流系數,表示不同開度下通過調壓閥的單位流量;D為調壓閥的直徑;ΔHp為調壓閥的水頭損失。

    將式(1)~(4)聯立求解,可得:中小型引水式水電站調壓閥尺寸優(yōu)化將式(5)代入式(1)、(2)即可求出Hp1、Hp2的值。由式(5)可知,調壓閥在某一相對開度下的過流量為其直徑的單調遞增函數,說明調壓閥直徑越大,其過流量也越大。

    當全部機組同時突甩負荷時,調壓閥直徑越大,可通過的過流量也越大,在機組導葉快速關閉、調壓閥同時開啟的過程中,機組轉速和水道系統壓力上升值越能得到好的控制。但在調壓閥關閉過程中,過大的流量可能會造成管道壓力出現新一波的上升,若第二波壓力上升過大則可能超過允許的控制標準。圖2為某電站調壓閥直徑分別為0.3、0.5m時全部機組甩負荷工況下的蝸殼壓力變化過程線。由圖可看出,相對于調壓閥直徑0.3m的情況,調壓閥直徑0.5m時波蝸殼壓力并未上升,但由于調壓閥直徑過大,第二波壓力遠大于波,與上述分析一致。若要降低第二波的壓力上升值,則需加長調壓閥的關閉時間,而在更長的關閉時間中,更多的水流從調壓閥流走,亦增加了系統的水能損失。

    中小型引水式水電站調壓閥尺寸優(yōu)化圖2 某電站蝸殼壓力變化過程線

    當同一水力單元的部分機組突甩負荷時,若調壓閥的直徑過大,過多的流量將從調壓閥流走,使受干擾的正常運行機組出力出現較大下降,由此可能發(fā)生相繼甩負荷事故。

    由以上分析可知,調壓閥直徑大小受運行工況、轉速、水錘壓力和造價等多方面因素的影響,因此選擇調壓閥直徑時需綜合考慮。調壓閥直徑的選取需滿足以下兩點原則:①小的調壓閥直徑應保證機組快速關閉時轉速上升率和波水錘壓力滿足調保要求;②大的調壓閥直徑應滿足調壓閥全開時的流量與機組額定流量基本相同,同時保證調壓閥關閉時產生的第二波水錘壓力亦滿足調保要求。

    2、中小型水電站調流調壓閥選型算例分析
    上海申弘閥門有限公司主營閥門有:蒸汽減壓閥,減壓閥(氣體減壓閥,可調式減壓閥,水減壓閥某引水式水電站有壓力輸水系統,采用“一洞兩機”的布置方式,裝機容量為2×2.1MW,額定水頭123.4m,壓力管道直徑1.8m,裝設兩臺水輪機,水輪機的額定流量為1.966m3/s,額定出力為2.21MW,額定轉速為1000r/min。由于該電站引水道較長、流量較小,且投資較少,因此擬采用調壓閥作為調節(jié)保證措施。電站輸水系統布置見圖3,總引水道長約4100m,每臺機組設置一個調壓閥。

    中小型引水式水電站調壓閥尺寸優(yōu)化圖3 電站輸水系統布置簡圖(單位:m)根據相關規(guī)范選取本電站的調保計算控制標準為機組大轉速升高率≤50%,設置調壓閥時蝸殼大壓力升高率一般取為0.15~0.20,在該電站計算中,取調壓閥正常工作時蝸殼大壓力升高率為0.175,即蝸殼大壓力控制值為153.509m。

    2.1、全部機組甩負荷工況
    選取出現蝸殼大壓力的工況(大水頭下兩臺機同時突甩負荷,機組導葉正常關閉)為工況1,在工況1下取調壓閥直徑分別為0.2、0.3、0.4、0.5m進行計算,得到相應的蝸殼末端壓力、機組轉速上升率及機組和調壓閥的流量變化。機組—調壓閥聯動的啟閉規(guī)律選為:機組導葉以15s一段直線規(guī)律關閉,同時調壓閥以15s一段直線規(guī)律開啟,達到全開并滯后10s后,調壓閥再以180s一段直線規(guī)律關閉。表1為不同調壓閥直徑時的蝸殼末端大壓力、機組大轉速上升率、機組大引用流量和調壓閥大泄流量,圖4為不同調壓閥直徑下蝸殼末端壓力變化過程線。

    表1 工況1下不同調壓閥直徑計算結果

    中小型引水式水電站調壓閥尺寸優(yōu)化
    由表1、圖4可看出:①調壓閥直徑為0.2m時,由于調壓閥直徑過小,導致調壓閥泄流能力不足,并未起到很好的降壓效果,在機組導葉關閉結束時刻,蝸殼末端出現大壓力為171.06m,超過調??刂茦藴?,機組轉速上升率也較大。②調壓閥直徑為0.5m時,機組轉速上升得到了很好的控制,同時蝸殼末端壓力在機組導葉關閉過程中幾乎未上升,反而有很大的下降,初的降壓效果很好,但由于調壓閥直徑過大,導致系統總流量增加過大,單個調壓閥大泄流量達4.072m3/s,在調壓閥關閉結束時刻,蝸殼末端新一波的壓力上升到大,遠超過了波的大壓力,超出了調??刂茦藴?。③調壓閥直徑為0.3m時,機組導葉關閉過程中系統總流量基本保持不變,蝸殼壓力上升較小,且調壓閥關閉過程中蝸殼壓力變化很小,蝸殼壓力變化過程線圍繞初始壓力小幅度震蕩,第二波水錘壓力與波基本一致。④調壓閥直徑為0.4m時,機組轉速上升率較低,雖第二波壓力超過波,但蝸殼末端大壓力仍控制在允許范圍內。因此,從全部機組甩負荷工況結果看,調壓閥直徑為0.3、0.4m時,機組轉速和水錘壓力均能得到控制。

    中小型引水式水電站調壓閥尺寸優(yōu)化
    圖4 不同調壓閥直徑時蝸殼末端大壓力、機組相對轉速和系統總流量變化過程線

    2.2、單臺機組甩負荷工況
    選取1臺機組突然甩負荷的工況為工況2,在工況2下取調壓閥直徑分別為0.2、0.3、0.4、0.5m進行水力干擾計算,得到不同調壓閥直徑下機組的力矩變化情況,分別見表2、圖5。機組—調壓閥啟閉規(guī)律同全部機組甩負荷工況。

    表2 工況2下不同調壓閥直徑計算結果中小型引水式水電站調壓閥尺寸優(yōu)化圖5 不同調壓閥直徑時正常工作機組相對力矩變化過程線由表2、圖5可看出:①調壓閥直徑為0.2m時,調壓閥直徑較小,致使正常工作機組的力矩上升較大,大力矩上升率達19.0%。②調壓閥直徑為0.4、0.5m時,由于調壓閥直徑過大,在甩負荷機組導葉關閉、調壓閥開啟過程中大部分水流從該調壓閥流走,正常工作的機組受到了較大的擾動,出現較大的力矩下降(大力矩下降率分別達20.5%、44.8%)。因此,選擇直徑為0.3m的調壓閥較為合適。

    通過上述兩個工況的計算分析表明,該電站選用直徑為0.3m的調壓閥作為調節(jié)保證措施為合適,這樣可在機組導葉快速關閉時,保證機組轉速上升和壓力上升均滿足調節(jié)保證要求。

    3、中小型水電站調流調壓閥選型結語
    分析了影響調壓閥直徑大小的多種因素,提出了合理的調壓閥直徑需滿足的兩個原則,確保了調壓閥關閉時產生的第二波水錘壓力亦滿足調保要求。并結合某電站調壓閥直徑的優(yōu)化計算,驗證了理論分析提出的原則。該原則同樣適用于任何采用調壓閥作為調節(jié)保證措施的中小型引水式電站,可供調壓閥直徑的優(yōu)化設計參考。與本產品相關論文禁油脫脂氧氣減壓閥操作維護